CS 342302 Operating Systems
Fall Semester 2021
Prof. Pai H. Chou

Weekly Review 7
The questions here serve the purpose of reviewing concepts from the lecture, and expect the concepts to be tested on the midterm and final. However, they are by no means exhaustive. Anything covered in the lecture and projects can be tested.

1. Definitions and Short Answers - CPU Scheduling
1. What are four cases when a preemptive CPU scheduler can take control?
2. What is the difference between a scheduler and a dispatcher?
3. What are the two cases when a nonpreemptive CPU scheduler can take control?
4. What kind of problem can be caused by preemptive scheduling that is not a problem for nonpreemptive?
5. Does a kernel have to be designed to be preemptive in order to support preemptive scheduling of user processes? Or can a nonpreemptive kernel also support preemptive scheduling of user processes?
6. What is the definition of CPU utilization?
a. What is its range?
b. What is a practical utilization level?
c. What level is considered heavy utilization?
6. What is the definition of throughput?
7. What is the difference between turnaround time and response time?
8. What is the definition of waiting time?
9. A scheduling may have the objectives to maximize or minimize which of the following criteria?
a. CPU utilization
b. turnaround time
c. throughput
d. response time
e. waiting time
10. How does FCFS algorithm schedule processes?
a. What is an advantage with FCFS?
b. What are the two disadvantages?
11. Consider the Shortest-Job First (SJF) algorithm:
a. What does "shortest job" refer to? Does it refer to the job's total length?
b. SJF is optimal for what criterion?
c. Why can't true SJF be implemented? How can it be approximated in practice?
d. What is the difference between preemptive and nonpreemptive versions of SFJ?
12. Given a job mix:

	Process
	burst time
	arrival time

	P1
	7
	0

	P2
	4
	2

	P3
	1
	4

	P4
	4
	5

a. Draw the Gantt chart for preemptive SJF
	P1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	t
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

i. What are the response times of P1, P2, P3, and P4?
ii. What is the total waiting time of the four processes?
iii. What is the average waiting time?

b. Draw the Gantt chart for nonpreemptive SJF

	P1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	P4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	t
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

i. What are the response times of P1, P2, P3, and P4?
ii. What is the total waiting time of the four processes?
iii. What is the average waiting time?

13. Consider round robin (RR) scheduling

a. Does it assume preemption or no preemption?
b. How does RR algorithm schedule tasks?
c. What is the effect of a long time quantum? It becomes similar to which other scheduling policy?
d. What is the effect of a short time quantum?

14. Given the job mix and a time quantum of 4,

	
	burst time
	arrival time

	P1
	6
	0

	P2
	3
	1

	P3
	3
	2

Draw the Gantt chart for Round Robin scheduling

	P1
	
	
	
	
	
	
	
	
	
	
	
	
	

	P2
	
	
	
	
	
	
	
	
	
	
	
	
	

	P3
	
	
	
	
	
	
	
	
	
	
	
	
	

	t
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

a. What are the response times of P1, P2, and P3?
b. What is the total waiting time of the three processes?

15. Most scheduling algorithms can be expressed as a combination of priority-scheduling and preemption (or not). What is the priority scheme and preemption option for the following algorithms?
a. FCFS
b. SJF
16. What is the meaning of starvation? What can cause starvation, and what is a possible solution?
17. \What is the difference between multilevel queue scheduling and multilevel feedback queue scheduling?
18. What is the scope of contention for
a. user-level (many-to-one and many-to-many) thread scheduling?
b. (one-to-one) kernel thread scheduling?
19. For multiiprocessor scheduling, what is asymmetric vs. symmetric multiprocessing?
a. Which one does scheduling centrally on one processor, and which one lets each processor schedule its own processes?
b. What are two scheduling options in SMP, and which option needs additional mechanisms? Which one is more common?
20. What are two ways two interpret "load balanced"?
21. What are two kinds of migration during load balancing?
22. What is processor affinity of a process?
23. What are two kinds of affinity policies an OS can set on process migration?
24. In a NUMA, what are the processors with high processor affinity for a process?
25. What is the difference between heterogeneous multiprocessing (HMP) and asymmetric multiprocessing?
26. What is a difference between how a soft real time system and a hard real time system in terms of treatment of real-time tasks?
27. What does event latency refer to? From the time an event occurs to ____?
28. the interrupt latency
a. is defined to be the amount of time from an arrival of interrupt to ___?
b. for real-time systems, it is not enough to just minimize the interrupt latency but it must also be ___?
29. the dispatch latency
a. is defined to be the amount of time for the dispatcher to ___
b. it is best minimized through ___
c. dispatch latency is further decomposed into conflicts and dispatch times. The conflicts time consists of time due to ___ and ___
30. What is the difference between online scheduling and offline scheduling?
a. Do both need to do schedulability analysis?
b. What does admission control mean?
c. What happens when an online scheduler is asked to schedule another real-time task but won't be able to guarantee meeting its timing constraints?

31. How is a periodic task defined?
a. it can have up to four variables. What are they?
32. What can an aperiodic task be? Can it repeat? if so, what would be some condition?
33. In rate monotonic (RM) scheduling,
a. Are the tasks periodic or aperiodic?
b. What is the deadline defined to be?
c. Is rate monotonic preemptive or not?
d. Is rate monotonic fixed or dynamic priority?
e. How does rate monotonic define the priority of a task?
f. Does the rate-monotonic priority of a task depend on the task's execution time?
34. In earliest deadline first (EDF) scheduling,
a. Can the tasks be periodic? aperiodic?
b. Is EDF preemptive or nonpreemptive?
c. Is EDF static priority or dynamic priority?
d. How does EDF define the priority of a task?
35. What is the schedulability condition for rate monotonic? Is it a necessary or a sufficient condition or both?
36. What is the schedulability condition for EDF? Is it a necessary or sufficient condition or both?

2. Programming Exercise
In this programming exercise, you are to build a CPU scheduler that can compute the schedule for a variety of policies and calculate the various cost functions.
2.1 FIFO and Priority Queue
A fundamental data structure in any CPU scheduler is a queue. Here, it can refer to a FIFO (first-in first-out) queue, but it may also refer to a priority queue, a LIFO (last-in first-out, also known as a stack), etc. Unlike random-access memory, where the reader or writer provides the memory address explicitly, a queue keeps track of its own addresses and provides only .get() and .put() methods for reading and writing one element at a time. The following class is provided as an example:
---------- file “fifo.py” ----------
class FIFO:
 def __init__(self, initList=[]):
 self.A = list(initList)
 def get(self): # remove element and return itse value
 self.A.pop(0) # throws underflow exception if empty
 def put(self, val): # add element
 self.A.append(val)
 def head(self): # A[0] if not empty, None instead of underflow exception
 return len(self.A) and self.A[0] or None
 def __iter__(self): # iterator over its elements
 return iter(self.A) # use list's standard iterator
 def __len__(self): # allows caller to call len(f) where f is FIFO
 return len(self.A)
 def __repr__(self): # shows a representation; we just show it as list
 return repr(self.A)

This will handle any data type. An example is (assume you save it in fifo.py)
>>> from fifo import *
>>> f = FIFO(range(3))
>>> f
[0, 1, 2]
>>> f.put(6)
>>> f.get()
0
>>> f.head()
1
>>> len(f)
3

In addition, you need an implementation of a priority queue based on min-heap. It has the following API. You are urged to try implementing minheap.py yourself, but a reference version is also available.

--------- template for file “minheap.py” -----------
class MinHeap:
 def __init__(self):
 def __len__(self):
 def __iter__(self):
 def __repr__(self):
 def get(self):
 def put(self, value):
 def head(self):
 def buildheap(self): # reinitialize content to be heap again

One difference is that your minheap data structure typecasts its elements to tuples before comparison, and Python will compare tuples in lexicographical order, and we will exploit this characteristic later when prioritizing tasks to run.
>>> from minheap import MinHeap
>>> h = MinHeap()
>>> for i in [(2,3), (3,4), (2,4), (4,5), (5, 6)]: h.put(i)
...
>>> h
[(2, 3), (3, 4), (2, 4), (4, 5), (5, 6)]
>>> h.get()
(2, 3)
>>> h
[(2, 4), (3, 4), (5, 6), (4, 5)]
>>> h.get()
(2, 4)
>>> h
[(3, 4), (4, 5), (5, 6)]
>>> h.put((6,7))
>>> h.get()
(3, 4)
>>> h
[(4, 5), (6, 7), (5, 6)]
2.2 Task class
You need to declare a Task class for representing the properties of a task to be scheduled, including properties given by the user and additional data for bookkeeping purpose. Here, we use the term Task to mean the workload to be performed, with or without having a process or a thread attached to it. A thread or process may be recycled to run different tasks over time. But sometimes tasks and processes are used interchangeably when the task is attached to a process. The given data are passed as arguments to the constructors. You may use the following template to define your task. Look for the italicized comments to add your own code. Again, you are urged to try implementing task.py yourself, but a reference version is also available.
--------- file “task-template.py” : save and rename it as “task.py” ----------
class Task:
 def __init__(self, name, release, cpuBurst):
 	# the task has a string name, release time and cpuBurst.
 	# the constructor may also need to initialize other fields,
 	# for statistics purpose. Examples include
 	# waiting time
 	# remaining time
 	# last dispatched time, and
 	# completion time

 def __str__(self):
 	return self.name

 def __repr__(self):
 	# note: the field names here are just examples.
 	# if you name them differently, please change them accordingly.
 	return self.__class__.__name__ + repr((self.name, self.release, self.cpuBurst))

 def setPriorityScheme(self, scheme="SJF"):
 	"""
 	the scheme can be "FCFS", "SJF", "RR", etc
 	"""
 _KNOWN_SCHEMES = ["FCFS", "SJF", "RR"]
 	if not scheme in _KNOWN_SCHEMES:
 	 raise ValueError("unknown priority scheme %s: must be FCFS, SJF, RR")
 	self.scheme = scheme

 def __str__(self):
 	return self.name

 def decrRemaining(self):
 	# call this method to decrement the remaining CPU burst time

 def remainingTime(self):
 	# return the remaining CPU burst time

 def done(self):
 	# returns a boolean for if this task has remaining work to do

 def setCompletionTime(self, time):
 	# records the clock value when the task is completed

 def turnaroundTime(self):
 	# returns the turnaround time of this task

 def incrWaitTime(self):
 	# increments the amount of waiting time

 def releaseTime(self):
 	# returns the release time of this task

 def __iter__(self):
 	# this enables converting the task into a tuple() type so that
 	# the priority queue can just cast it to tuple before comparison.
 	# it depends on the policy
 	if (self.scheme == 'FCFS'):
 	 t = (self.release,) # example, but you may want a secondary
 	# priority for tie-breaker. if so, just add them to the tuple.
 	elif (self.scheme == 'SJF'): # shortest job first
 	 t = # tuple that defines priority in terms of "job length"
 	# or is it really job length?
 	elif (self.scheme == 'RR'): # round robin
 	 t = # define round robin priority if you use a MinHeap;
 	# or you could just use a FIFO.
 	else:
 	 raise ValueError("Unknown scheme %s" % self.scheme)
 	return iter(t)

2.3 Nonpreemptive Scheduler

The NPScheduler class is instantiated with a policy and up to N time steps. Then the caller may add tasks to be scheduled, either as the scheduler runs or all at the beginning. The scheduler runs one time step at a time to fill in the Gantt chart with scheduled tasks. It also provides methods for the statistics. Use the following template (npsched-template.py, rename it as npsched.py) to make your scheduler

from fifo import FIFO
from minheap import MinHeap
from task import Task
class NPScheduler: # nonpreemptive scheduler
 def __init__(self, N, policy='SJF'):
 self.N = N # number of timesteps to schedule
 self.running = None
 self.clock = 0 # the current timestep being scheduled
 self.policy = policy
 # instantiate the readyQueue, which may be a FIFO or MinHeap
 # you may need additional queues for
 # - tasks that have been added but not released yet
 # - tasks that have been completed
 # - the Gantt chart

 def addTask(self, task):
 # if the release time of the new task is not in the future, then
 # put it in ready queue; otherwise, put into not-ready queue.
 # you may need to copy the scheduler policy into the task

 def dispatch(self, task):
 # dispatch here means assign the chosen task as the one to run
 # in the current time step.
 # the task should be removed from ready-queue by caller;
 # The task may be empty (None).
 # This method will make an entry into the Gantt chart and perform
 # bookkeeping, including
 # - recording the last dispatched time of this task,
 # - increment the wait times of those tasks not scheduled
 # but in the ready queue

 def releaseTasks(self):
 '''
 this is called at the beginning of scheduling each time step to see
 if new tasks became ready to be released to ready queue, when their
 release time is no later than the current clock.
 '''
 while True:
 r = self.notReadyQueue.head()
 # assuming the not-Ready Queue outputs by release time
 if r is None or r.releaseTime() > self.clock:
 break
 r = self.notReadyQueue.get()
 r.setPriorityScheme(self.policy)
 self.readyQueue.put(r)

 def checkTaskCompletion(self):
 # if there is a current running task, check if it has just finished.
 # (i.e., decrement remaining time and see if it has more work to do.
 # If so, perform bookkeeping for completing the task,
 # - move task to done-queue, set its completion time and lastrun time
 # set the scheduler running task to None, and return True
 # (so that a new task may be picked.)
 # but if not completed, return False.
 # If there is no current running task, also return True.
 if self.running is None:
 return True
 # your code here

 def schedule(self):
 # scheduler that handles nonpreemptive scheduling.
 # the policy such as RR, SJF, or FCFS is handled by the task as it
 # defines the attribute to compare (in its __iter__() method)
 # first, check if added but unreleased tasks may now be released
 # (i.e., added to ready queue)
 self.releaseTasks()
 if self.checkTaskCompletion() == False:
 # There is a current running task and it is not done yet!
 # the same task will continue running to its completion.
 # simply redispatch the current running task.
 else:
 # task completed or no running task.
 # get the next task from priority queue and dispatch it.

 def clockGen(self):
 # this method runs the scheduler one time step at a time.
 for self.clock in range(self.N):
 # now run scheduler here
 self.schedule()
 yield self.clock

 def getSchedule(self):
 return '-'.join(map(str, self.ganttChart))

def testNPScheduler(tasks, policy):
 nClocks = 20
 scheduler = NPScheduler(nClocks, policy)

 for t in tasks:
 scheduler.addTask(t)

 for clock in scheduler.clockGen():
 pass

 print('nonpreemptive %s: %s' % (scheduler.policy, scheduler.getSchedule()))

if __name__ == '__main__':
 tasks = [Task(*i) for i in [('A', 0, 7), ('B', 2, 4), ('C', 4, 1), ('D', 5, 4)]]
 print('tasks = %s' % tasks)
 for policy in ['SJF', 'FCFS', 'RR']:
 tasks = [Task(*i) for i in [('A', 0, 7), ('B', 2, 4), ('C', 4, 1), ('D', 5, 4)]]
 testNPScheduler(tasks, policy)

--------- Your output would look like this:

$ python3 npscheduler.py
tasks = [Task('A', 0, 7), Task('B', 2, 4), Task('C', 4, 1), Task('D', 5, 4)]
nonpreemptive SJF: A-A-A-A-A-A-A-C-B-B-B-B-D-D-D-D-None-None-None-None
nonpreemptive FCFS: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None
nonpreemptive RR: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None

2.4 Preemptive Scheduler

For this part, make a copy of your nonpreemptive scheduler and make it a preemptive one.

The overall structure is the same as the Nonpreemptive scheduler.
-------- file “psched-template.py”, rename and save as “psched.py”

class PScheduler(NPScheduler): # subclass from nonpreemptive scheduler
 # this means it can inherit
 # __init__(), addTask(), dispatch(), releaseTasks()
 # clockGen(), getSchedule()

 def preempt(self):
 # this is the new method to add to put the running task
 # back into ready queue, plus any bookkeeping if necessary.

 def schedule(self):
 self.releaseTasks() # same as before
 if self.checkTaskCompletion() == False:
 # still have operation to do.
 # see if running task or next ready task has higher priority
 # hint: compare by first typecasting the tasks to tuple() first
 # and compare them as tuples. The tuples are defined in
 # the __iter__() method of the Task class based on policy.
 # if next ready is not higher priority, redispatch current task.
 # otherwise,
 # - swap out current running (by calling preempt method)
 # task completed or swapped out
 # pick next task from ready queue to dispatch, if one exists.

def testPScheduler(tasks, policy):
 # this is same as before, but instantiate the preemptive scheduler.
 nClocks = 20
 scheduler = PScheduler(nClocks, policy)
 # the rest is the same as before
 for t in tasks:
 scheduler.addTask(t)
 for clock in scheduler.clockGen():
 pass
 print('preemptive %s: %s' % (scheduler.policy, scheduler.getSchedule()))

if __name__ == '__main__':
 tasks = [Task(*i) for i in [('A', 0, 7), ('B', 2, 4), ('C', 4, 1), ('D', 5, 4)]]
 print('tasks = %s' % tasks)
 for policy in ['SJF', 'FCFS', 'RR']:
 tasks = [Task(*i) for i in [('A', 0, 7), ('B', 2, 4), ('C', 4, 1), ('D', 5, 4)]]
 testPScheduler(tasks, policy)

Your output would look like
tasks = [Task('A', 0, 7), Task('B', 2, 4), Task('C', 4, 1), Task('D', 5, 4)]
preemptive SJF: A-A-B-B-C-B-B-D-D-D-D-A-A-A-A-A-None-None-None-None
preemptive FCFS: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None
preemptive RR: A-A-B-A-B-C-A-D-B-A-D-B-A-D-A-D-None-None-None-None

2.5 Add Statistics

Implement the following methods to the nonpreemptive scheduler code (and the preemptive one will automatically get the same code due to inheritance).

 def getThroughput(self):
 # throughput is the number of processes completed per unit time.
 # returns a tuple for (number of done processes, number of clocks)

 def getWaitTime(self):
 # returns a tuple for (total wait time of processes, #processes)

 def getTurnaroundTime(self):
 # returns a tuple for (total turnaround times, #processes)

Combine the nonpreemptive and preemptive schedulers into the same test bench and print out the statistics. Download the schedstat.py to run, and the output looks like

$ python3 schedstat.py
tasks = [Task('A', 0, 7), Task('B', 2, 4), Task('C', 4, 1), Task('D', 5, 4)]
nonpreemptive SJF: A-A-A-A-A-A-A-C-B-B-B-B-D-D-D-D-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (16, 4) = 4.00, turnaroundtime = (32, 4) = 8.00
preemptive SJF: A-A-B-B-C-B-B-D-D-D-D-A-A-A-A-A-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (12, 4) = 3.00, turnaroundtime = (28, 4) = 7.00
nonpreemptive FCFS: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (19, 4) = 4.75, turnaroundtime = (35, 4) = 8.75
preemptive FCFS: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (19, 4) = 4.75, turnaroundtime = (35, 4) = 8.75
nonpreemptive RR: A-A-A-A-A-A-A-B-B-B-B-C-D-D-D-D-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (19, 4) = 4.75, turnaroundtime = (35, 4) = 8.75
preemptive RR: A-A-B-A-B-C-A-D-B-A-D-B-A-D-A-D-None-None-None-None
 thruput = (4, 16) = 0.25, waittimes = (22, 4) = 5.50, turnaroundtime = (38, 4) = 9.50

